Mechanical Properties of the Magmaris (magnesium) Bioresorbable Scaffold

John Ormiston

MBChB, FRACP, FRANZCR, FCSANZ, FAPSIC, FACC, FRCP, ONZM Medical Director Mercy Angiography Professor, University of Auckland School of Medicine Interventional Cardiologist Auckland New Zealand

> 7.24-7.32 Presentation Theater 1 Level 1 April 29th 2019

The Absorb polymeric BRS had increased scaffold thrombosis

Magnesium has mechanical properties somewhat better than polymers and is anti-thrombotic

WaksmanCirc Cardiovasc Interv 2017OnumaCirc Cardiovasc Interv 2017RukshinCirculation 2002ShechterAm J Cardiol 1999DongThromb HaemostHuntsmanJ Clin Path 1960HuntsmanNature 1960

This study compared mechanical properties of the Magmaris (magnesium) scaffold with polymeric scaffolds and a metallic stent

Magnesium has better qualities than PLLA but not as good as CoCr

Mg alloy has better qualities than PLLA but is not as good as CoCr

Magmaris design is in-phase sinusoidal hoops linked by 2 connectors that join the hoops midway between peaks and troughs

Strut edges are rounded

Ormiston

Strut rounded edges vs square

- Less flow disturbance
- Easier to deliver
 - Faster endothelialization

Strut dimensions and vessel coverage for Magmaris, polymeric BRS and durable DES (3.0mm devices)

		_			
	DES	Ро	lymeric B	BRS	Mg BRS
	ML8/Xience Expedition	Absorb	DESolve	DESolve Cx	Magmaris
Strut thickness	89µm	157µm	150µm	120µm	150µm
Strut width	89-112µm	Hoop 191µm Connector 140µm	Hoop 165µm Connector 100µm	Hoop 165µm Connector 100µm	Hoop 150µm Connector 80-100µm
Strut/vessel coverage (Footprint)	13%	27%	30%	30%	20% Ormiston

	DES	Ро	lymeric I	BRS	Mg BRS
		3255			
	ML8/Xience Expedition	Absorb	DESolve	DESolve Cx	Magmaris
Strut thickness	89µm	157µm	150µm	120µm	150µm
Strut width	89-112µm	Hoop 191µm Connector 140µm	Hoop 165µm Connector 100µm	Hoop 165µm Connector 100µm	Hoop 150µm Connector 80-100µm
Strut/vessel coverage (Footprint)	13%	27%	30%	30%	20% ₇ Ormiston

	DES	Ро	lymeric B	BRS	Mg BRS
	ML8/Xience Expedition	Absorb	DESolve	DESolve Cx	Magmaris
Strut thickness	89µm	157µm	150µm	120µm	150µm
Strut width	89-112µm	Hoop 191µm Connector 140µm	Hoop 165µm Connector 100µm	Hoop 165µm Connector 100µm	Hoop 150µm Connector 80-100µm
Strut/vessel coverage (Footprint)	13%	27%	30%	30%	20% ₈ Ormiston

3.0 mm Device Crossing Profile

The Magmaris has a large crossing profile Large profile makes delivery more difficult

Radial Strength at implantation

Pressure and Cross-sectional Area Reduction

Risk of 3.0 mm Scaffold Fracture with Increasing Main Branch Balloon Diameter Magmaris is less likely to fracture than Absorb

11

3.5mm post-dilatation improves diams after recoil

Timing of freedom from "caging"

If too early, the negative remodelling is not opposed-> Restenosis

Device	Timing	Evidence for timing
Magnesium	<<<6 months	Haude Lancet 2013
Absorb	1 year	Ormiston Circ Int 2012
ReZolve REVA	?6 months	Strandberg Circ Int 2012 (preclinical)
DESolve Elixir	6 months	Verheye TCT 2012 Sirhan CRT 2013,
ART	3 months	Lafont, Virmani Fajadet TCT 12

Restenosis in a Collapsed Magnesium Bioresorbable Scaffold (Rare) Resorption too early to counter negative remodelling of PCI?

Barkholt Circ Cardiovasc Int 2017

Also Marynissen CCVI 2018 Yang JACC Interv 2018

3.0mm Side-branch balloon dilatation pressure and strut fracture in 3.0mm scaffolds/stents

10 atm is a safe threshold for Absorb. Others did not fracture

Scaffold fractures during mini-kissing balloon post-dilatation

(30 degree SB angle phantom)

5 atm is the safe threshold for 3.0mm Absorb and two 3.0mm NC balloons The low pressure fractures for DESolve Cx and Magmaris are "outliers".

Strut damage is not always predictable

Struts are more fixed in B, scaffold expansion \rightarrow potential for strut rupture

One reason a 2.5mm balloon may sometimes cause strut fracture even in 3.5mm scaffold

A Strut fracture less likely

B Strut fracture more likely

=Balloon uninflated

Ormiston

Typical distortion after SB dilation is corrected by mini-kissing balloon post-dilatation

Mini-Kissing Balloon Post-dilatation at 5 atmos

Mini-Kissing Balloon Post-dilatation at 10 atmos

Mini-Kissing Balloon Post-dilatation at 15 atmos

Ormiston

Summary

Magnesium has mechanical properties better than polymers and is anti-thrombotic compared with Absorb

The Magmaris has thinner, narrower and more rounded struts than Absorb and wall coverage (footprint) is less

With post-dilatation, Magmaris is more resistant to fracture than Absorb but less resistant than DESolve and metallic durable DES

The Magmaris crossing profile is similar to Absorb but larger than metallic durable DES

Magmaris may be a new hope for BRS